SEER Logo

SEER Training Modules

Characteristics of Hormones

Chemical Nature of Hormones

Chemically, hormones may be classified as either proteins or steroids. All of the hormones in the human body, except the sex hormones and those from the adrenal cortex, are proteins or protein derivatives.

Mechanism of Hormone

Action Hormones are carried by the blood throughout the entire body, yet they affect only certain cells. The specific cells that respond to a given hormone have receptor sites for that hormone. This is sort of a lock-and-key mechanism. If the key fits the lock, then the door will open. If a hormone fits the receptor site, then there will be an effect. If a hormone and a receptor site do not match, then there is no reaction. All the cells that have receptor sites for a given hormone make up the target tissue for that hormone. In some cases, the target tissue is localized in a single gland or organ. In other cases, the target tissue is diffuse and scattered throughout the body so that many areas are affected. Hormones bring about their characteristic effects on target cells by modifying cellular activity.

Protein hormones react with receptors on the surface of the cell, and the sequence of events that results in hormone action is relatively rapid. Steroid hormones typically react with receptor sites inside a cell. Because this method of action actually involves synthesis of proteins, it is relatively slow.

Control of Hormone Action

Hormones are very potent substances, which means that very small amounts of a hormone may have profound effects on metabolic processes. Because of their potency, hormone secretion must be regulated within very narrow limits in order to maintain homeostasis in the body.

Many hormones are controlled by some form of a negative feedback mechanism. In this type of system, a gland is sensitive to the concentration of a substance that it regulates. A negative feedback system causes a reversal of increases and decreases in body conditions in order to maintain a state of stability or homeostasis. Some endocrine glands secrete hormones in response to other hormones. The hormones that cause secretion of other hormones are called tropic hormones. A hormone from gland A causes gland B to secrete its hormone. A third method of regulating hormone secretion is by direct nervous stimulation. A nerve stimulus causes gland A to secrete its hormone.